Embedded Software and Hardware Architecture is a first dive into understanding embedded architectures and writing software to manipulate this hardware. You will gain experience writing low-level firmware to directly interface hardware with highly efficient, readable and portable design practices. We will now transition from the Host Linux Machine where we built and ran code in a simulated environment to an Integrated Development Environment where you will build and install code directly on your ARM Cortex-M4 Microcontroller. Course assignments include writing firmware to interact and configure both the underlying ARM architecture and the MSP432 microcontroller platform. The course concludes with a project where you will develop a circular buffer data structure.
제공자:
Embedded Software and Hardware Architecture
콜로라도 대학교 볼더 캠퍼스이 강좌에 대하여
제공자:

콜로라도 대학교 볼더 캠퍼스
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
강의 계획표 - 이 강좌에서 배울 내용
Interfacing C-Programs with ARM Core Microcontrollers
Module 1 will introduce the learner to how software/firmware can interface with an embedded platform and the underlying processor architecture. Embedded Software engineers must be very knowledgeable about the architecture in order to write efficient and bug free code. This requires knowledge of processor architecture. memory systems, microcontroller peripherals and more advanced use of the compiler. This module will continue to enforce good software design techniques with a focus on portability and maintainability without reducing your hardware’s performance.
Manipulating Memory
Module 2 will introduce the learner to more advanced firmware techniques as well move us into some hands on firmware for the microcontroller. We start by building our own memory access methods that will allow a programmer to manipulate peripheral memory bit fields to configure microcontroller peripherals and core architecture concepts. This will include more complex use of pointers for register definition files and function pointers for interrupt vector tables The module concludes with an in-depth look into the features of on-target debugging on a microcontroller and a hands-on example.
Designing Embedded Data Structures
Module 3 will introduce the learner to efficient and maintainable ways of organizing data. Most microcontroller programs require some use of structured data in order to track and manipulate the control flow or data in a program. These can be as simple as unions, enumerations or structures, but can be more complex with the use of abstract data structures. While abstract data structures are often discussed in higher level software, there are many simple examples that are used frequently in embedded system software.
검토
- 5 stars69.32%
- 4 stars19.32%
- 3 stars6.95%
- 2 stars2.31%
- 1 star2.06%
EMBEDDED SOFTWARE AND HARDWARE ARCHITECTURE의 최상위 리뷰
All the videos are very helpful. All concepts are taught well. More hands on assignments could be added to course.
This is a very wonderful course. The instruction was perfectly delivered, and I can see myself going places with what I have learned here so far.
Excellent Course by Alex. The slides and the material is top notch. Looking forward to the other courses.
Great work by Alex University of Colorado Boulder and Alex but it should increase the course length
자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 수료증을 구매하면 무엇을 이용할 수 있나요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.