이 강좌에 대하여

최근 조회 144,363

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 30시간 필요

영어

자막: 영어

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 30시간 필요

영어

자막: 영어

제공자:

SAS 로고

SAS

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 1시간 필요

Course Overview

완료하는 데 1시간 필요
1개 동영상 (총 1분), 3 개의 읽기 자료, 1 개의 테스트
1개의 동영상
3개의 읽기 자료
Learner Prerequisites
Using SAS® Viya® for Learners with This Course (Required)10m
Using Forums and Getting Help10m
완료하는 데 5시간 필요

Getting Started with Machine Learning using SAS® Viya®

완료하는 데 5시간 필요
15개 동영상 (총 40분), 16 개의 읽기 자료, 10 개의 테스트
15개의 동영상
Machine Learning in SAS Viya2m
Analytics Life Cycle1m
Case Study: Customer Churn2m
SAS Viya Tools for SAS Visual Data Mining and Machine Learning1m
Demo: Creating a Project4m
Predictive Modeling5m
Importance of Data Preparation55
Essential Data Tasks1m
Dividing the Data3m
Addressing Rare Events Using Event-Based Sampling3m
Demo: Modifying the Data Partition4m
Managing Missing Values3m
Demo: Building a Pipeline from a Basic Template4m
SAS Viya in the SAS Platform: Architecture1m
16개의 읽기 자료
Applications of Prediction-Based Decision Making10m
Advantages of the SAS Platform10m
Case Study: Data Dictionary10m
SAS Drive and the Applications Menu10m
Importing Data from a Local Source10m
SAS Viya Tools for Data Preparation10m
Cross Validation for Small Data Sets10m
Global Metadata10m
Managing Missing Values: Details10m
Pipeline Templates in Model Studio10m
Logistic Regression10m
SAS Cloud Analytic Services10m
SAS Viya: A Shift in Mindset10m
Data Sources and CAS10m
Interfaces and Products10m
SAS Visual Data Mining and Machine Learning10m
7개 연습문제
Question 1.012m
Question 1.022m
Question 1.032m
Question 1.042m
Question 1.052m
Question 1.062m
Getting Started with Machine Learning and SAS Viya30m
2

2

완료하는 데 6시간 필요

Data Preparation and Algorithm Selection

완료하는 데 6시간 필요
14개 동영상 (총 47분), 11 개의 읽기 자료, 16 개의 테스트
14개의 동영상
Exploring the Data1m
Demo: Exploring the Data4m
Replacing Incorrect Values1m
Demo: Replacing Incorrect Values Starting on the Data Tab7m
Feature Creation27
Text Mining1m
Demo: Adding Text Mining Features7m
Using Transformations to Handle Extreme or Unusual Values3m
Demo: Transforming Inputs5m
Selecting Useful Inputs4m
Demo: Selecting Features6m
Demo: Saving a Pipeline to the Exchange1m
Essential Discovery Tasks and Selecting an Algorithm1m
11개의 읽기 자료
Data Mining Preprocessing Nodes in Model Studio10m
Replacing Incorrect Values Starting with the Manage Variables Node10m
Singular Value Decomposition10m
Feature Extraction Node10m
Finding the Best Transformation in Model Studio10m
Feature Selection and the Variable Selection Node in Model Studio: Details10m
Variable Clustering10m
Best Practices for Common Data Preparation Challenges10m
Automated Feature Engineering Pipeline Template10m
Considerations for Selecting an Algorithm10m
Comparison of Modeling Algorithms10m
9개 연습문제
Question 2.012m
Question 2.022m
Question 2.032m
Question 2.042m
Question 2.052m
Question 2.062m
Question 2.072m
Question 2.085m
Data Preparation and Algorithm Selection Quiz30m
3

3

완료하는 데 7시간 필요

Decision Trees and Ensembles of Trees

완료하는 데 7시간 필요
23개 동영상 (총 68분), 12 개의 읽기 자료, 21 개의 테스트
23개의 동영상
Basics of Decision Trees2m
Demo: Building a Decision Tree Model Using the Default Settings7m
Decision Trees for Categorical Targets: Classification Trees3m
Decision Trees for Interval Targets: Regression Trees2m
Improving the Decision Tree Model25
Demo: Modifying the Structure Parameters1m
Recursive Partitioning3m
Splitting Criteria4m
Split Search9m
Demo: Modifying the Recursive Partitioning Parameters1m
Optimizing the Complexity of a Decision Tree Model39
Pruning3m
Demo: Modifying the Pruning Parameters2m
Regularizing and Tuning the Hyperparameters of a Machine Learning Model2m
Building Ensemble Models1m
Perturb and Combine Methods5m
Bagging2m
Boosting1m
Comparison of Tree-Based Models1m
Demo: Building a Gradient Boosting Model3m
Forest Models3m
Demo: Building a Forest Model4m
12개의 읽기 자료
Impurity Reduction Measures for Categorical and Interval Targets10m
Splitting Criteria in Model Studio10m
Adjustments in a Split Search10m
Missing Values in Decision Trees in Model Studio10m
Surrogate Splits10m
Calculating Variable Importance for Surrogate Splits10m
Bottom-Up Pruning Requirements10m
Pruning Options in Model Studio10m
Autotuning Options for Decision Trees in Model Studio10m
Gradient Boosting Models10m
Autotuning Options for Gradient Boosting in Model Studio10m
Autotuning Options for Forests in Model Studio10m
11개 연습문제
Question 3.01
Question 3.022m
Question 3.032m
Question 3.042m
Question 3.052m
Think About It2m
Question 3.062m
Question 3.072m
Question 3.08
Question 3.092m
Decision Trees and Ensembles of Trees Quiz30m
4

4

완료하는 데 4시간 필요

Neural Networks

완료하는 데 4시간 필요
18개 동영상 (총 37분), 10 개의 읽기 자료, 13 개의 테스트
18개의 동영상
Beyond Traditional Regression: Neural Networks3m
Limitations of Neural Networks2m
Basics of Neural Networks3m
Estimating Weights and Making Predictions3m
Learning Process2m
Essential Discovery Tasks for Neural Networks24
Demo: Building a Neural Network Using the Default Settings3m
Improving the Neural Network Model22
Neural Network Architectures4m
Activation Functions1m
Shaping the Sigmoid2m
Demo: Modifying the Neural Network Architecture1m
Optimizing the Complexity of a Neural Network Model40
Weight Decay1m
Early Stopping2m
Regularizing and Tuning the Hyperparameters of a Neural Network Model32
Demo: Modifying the Learning and Optimization Parameters2m
10개의 읽기 자료
Standardization Methods10m
Iterative Updating in Numerical Optimization10m
Numerical Optimization Methods in Model Studio10m
Deviance Measures in Model Studio10m
Calculating the Number of Parameters10m
Deep Learning10m
Hidden Layer Activation Functions in Model Studio10m
Target Layer Activation Functions and Error Functions in Model Studio10m
Selected Hyperparameters Related to the Learning Process in Model Studio10m
Autotuning Options for Neural Networks in Model Studio10m
8개 연습문제
Question 4.012m
Question 4.022m
Question 4.032m
Question 4.042m
Question 4.052m
Question 4.062m
Question 4.072m
Neural Networks Quiz30m

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 결제일 기준 2주 후 또는 (방금 시작된 강좌의 경우) 강좌의 첫 번째 세션이 시작된 후 2주 후 중에서 나중에 도래하는 날짜까지 전액 환불받을 수 있습니다. 2주 환불 기간 이내에 강좌를 완료했더라도 강좌 수료증을 받았으면 환불받을 수 없습니다. 전체 환불 정책을 확인하세요.

  • 예, Coursera는 수업료를 지급하기 어려운 학습자들에게 재정 지원을 제공합니다. 왼쪽의 "등록" 버튼 아래에 있는 재정 지원 링크를 클릭하면 재정 지원을 신청할 수 있습니다. 이 링크를 클릭하면 신청서를 작성하라는 메시지가 나타나며, 신청서가 승인되면 통지를 받게 됩니다. 자세히 알아보세요.

  • We recommend Chrome, Firefox or Safari when accessing the software.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.