- Python Libraries
- Machine Learning
- regression
- Hierarchical Clustering
- K-Means Clustering
- Deep Learning
- Artificial Neural Network
- Artificial Intelligence (AI)
- keras
- Opencv
- Image Processing
- Computer Vision
IBM AI 엔지니어링 전문 자격증
Launch your career as an AI engineer. 기계 학습과 딥 러닝 기술을 사용하여 빅데이터에서 비즈니스 정보를 뽑아내는 방법을 배우세요.
배울 내용
Describe machine learning, deep learning, neural networks, and ML algorithms like classification, regression, clustering, and dimensional reduction
Implement supervised and unsupervised machine learning models using SciPy and ScikitLearn
Deploy machine learning algorithms and pipelines on Apache Spark
Build deep learning models and neural networks using Keras, PyTorch, and TensorFlow
귀하가 습득할 기술
이 전문 자격증 정보
응용 학습 프로젝트
Throughout the program, you will build a portfolio of projects demonstrating your mastery of course topics. The hands-on projects will give you a practical working knowledge of Machine Learning libraries and Deep Learning frameworks such as SciPy, ScikitLearn, Keras, PyTorch, and Tensorflow. You will also complete an in-depth Capstone Project, where you’ll apply your AI and Neural Network skills to a real-world challenge and demonstrate your ability to communicate project outcomes.
관련 경험이 어느 정도 필요합니다.
관련 경험이 어느 정도 필요합니다.
전문 자격증이란 무엇인가요?
기술을 쌓아서 실무에 대비
새로운 분야에서 커리어를 찾고 있거나 현재 커리어에 변화를 주고 싶다면, Coursera의 전문 자격증을 취득하여 준비된 인재로 거듭날 수 있습니다. 가장 편리한 시간과 장소에서 나에게 맞는 속도로 배워보세요. 지금 바로 등록하고 7일 무료 평가판을 통해 새로운 진로를 탐색해보세요. 언제든지 학습을 일시 중지하거나 구독을 종료할 수 있습니다.
실습 프로젝트
실습 프로젝트에서 기술을 적용해보고, 미래 고용주에게 실무적으로 준비된 인재임을 보여주는 포트폴리오를 만들어보세요. 자격증을 취득하려면 프로젝트를 성공적으로 완료해야 합니다.
경력 자격 증명 취득
프로그램의 모든 강좌를 완료하면 전문가 네트워크에서 공유할 수 있는 자격증을 얻게 되며, 새로운 커리어를 시작하는 데 도움이 되는 커리어 지원 리소스에 액세스할 수 있게 됩니다. 많은 전문 자격증은 해당 전문 자격증의 자격 증명을 인정해주는 채용 파트너가 있거나, 자격증 시험을 준비하는 데 도움이 됩니다. 해당하는 경우 개별 전문 자격증 페이지에서 자세한 내용을 알아볼 수 있습니다.

이 전문 자격증에는 6개의 강좌가 있습니다.
Python을 통한 머신 러닝
This course dives into the basics of machine learning using an approachable, and well-known programming language, Python.
Introduction to Deep Learning & Neural Networks with Keras
Looking to start a career in Deep Learning? Look no further. This course will introduce you to the field of deep learning and help you answer many questions that people are asking nowadays, like what is deep learning, and how do deep learning models compare to artificial neural networks? You will learn about the different deep learning models and build your first deep learning model using the Keras library.
Introduction to Computer Vision and Image Processing
Computer Vision is one of the most exciting fields in Machine Learning and AI. It has applications in many industries, such as self-driving cars, robotics, augmented reality, and much more. In this beginner-friendly course, you will understand computer vision and learn about its various applications across many industries.
Deep Neural Networks with PyTorch
The course will teach you how to develop deep learning models using Pytorch. The course will start with Pytorch's tensors and Automatic differentiation package. Then each section will cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning will be covered. Finally, several other Deep learning methods will be covered.
제공자:

IBM
IBM is the global leader in business transformation through an open hybrid cloud platform and AI, serving clients in more than 170 countries around the world. Today 47 of the Fortune 50 Companies rely on the IBM Cloud to run their business, and IBM Watson enterprise AI is hard at work in more than 30,000 engagements. IBM is also one of the world’s most vital corporate research organizations, with 28 consecutive years of patent leadership. Above all, guided by principles for trust and transparency and support for a more inclusive society, IBM is committed to being a responsible technology innovator and a force for good in the world.
학위 취득을 위한 학점 얻기
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
How can I earn my IBM Badge?
What are some examples of careers in artificial intelligence?
How long does it take to complete the Professional Certificate?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Professional Certificate?
What will I be able to do upon completing the Professional Certificate?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.