- Information Engineering
- Google Cloud
- Bigquery
- Tensorflow
- Cloud Computing
- Google Cloud Platform
Google 클라우드 자격증: 클라우드 데이터 엔지니어 취득 준비 전문 자격증
Advance your career in data engineering
제공자:
배울 내용
Identify the purpose and value of the key Big Data and Machine Learning products in Google Cloud.
Employ BigQuery to carry out interactive data analysis.
Use Cloud SQL and Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud.
Choose between different data processing products on Google Cloud.
귀하가 습득할 기술
이 전문 자격증 정보
응용 학습 프로젝트
This Professional Certificate incorporates hands-on labs using our Qwiklabs platform.
These hands on components will let you apply the skills you learn in the video lectures. Projects will incorporate topics such as Google BigQuery, which are used and configured within Qwiklabs. You can expect to gain practical hands-on experience with the concepts explained throughout the modules.
You should have basic proficiency with a common query language such as SQL; experience developing applications using common programming languages.
You should have basic proficiency with a common query language such as SQL; experience developing applications using common programming languages.
전문 자격증이란 무엇인가요?
기술을 쌓아서 실무에 대비
새로운 분야에서 커리어를 찾고 있거나 현재 커리어에 변화를 주고 싶다면, Coursera의 전문 자격증을 취득하여 준비된 인재로 거듭날 수 있습니다. 가장 편리한 시간과 장소에서 나에게 맞는 속도로 배워보세요. 지금 바로 등록하고 7일 무료 평가판을 통해 새로운 진로를 탐색해보세요. 언제든지 학습을 일시 중지하거나 구독을 종료할 수 있습니다.
실습 프로젝트
실습 프로젝트에서 기술을 적용해보고, 미래 고용주에게 실무적으로 준비된 인재임을 보여주는 포트폴리오를 만들어보세요. 자격증을 취득하려면 프로젝트를 성공적으로 완료해야 합니다.
경력 자격 증명 취득
프로그램의 모든 강좌를 완료하면 전문가 네트워크에서 공유할 수 있는 자격증을 얻게 되며, 새로운 커리어를 시작하는 데 도움이 되는 커리어 지원 리소스에 액세스할 수 있게 됩니다. 많은 전문 자격증은 해당 전문 자격증의 자격 증명을 인정해주는 채용 파트너가 있거나, 자격증 시험을 준비하는 데 도움이 됩니다. 해당하는 경우 개별 전문 자격증 페이지에서 자세한 내용을 알아볼 수 있습니다.

이 전문 자격증에는 6개의 강좌가 있습니다.
Google Cloud Big Data and Machine Learning Fundamentals
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
Modernizing Data Lakes and Data Warehouses with Google Cloud
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment.
Building Batch Data Pipelines on GCP
Data pipelines typically fall under one of the Extra-Load, Extract-Load-Transform or Extract-Transform-Load paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners will get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.
Building Resilient Streaming Analytics Systems on Google Cloud
Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Cloud Bigtable for analysis. Learners will get hands-on experience building streaming data pipeline components on Google Cloud using QwikLabs.
제공자:

Google 클라우드
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
How long does it take to complete the Professional Certificate?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.