Chevron Left
Interpretable machine learning applications: Part 5(으)로 돌아가기

Coursera Project Network의 Interpretable machine learning applications: Part 5 학습자 리뷰 및 피드백

강좌 소개

You will be able to use the Aequitas Tool as a tool to measure and detect bias in the outcome of a machine learning prediction model. As a use case, we will be working with the dataset about recidivism, i.e., the likelihood for a former imprisoned person to commit another offence within the first two years, since release from prison. The guided project will be making use of the COMPAS dataset, which already includes predicted as well as actual outcomes. Given also that this technique is largely based on statistical descriptors for measuring bias and fairness, it is very independent from specific Machine Learning (ML) prediction models. In this sense, the project will boost your career not only as a Data Scientists or ML developer, but also as a policy and decision maker....
필터링 기준:

Interpretable machine learning applications: Part 5의 2개 리뷰 중 1~2

교육 기관: Mohamed K

2021년 6월 20일

G​ood

교육 기관: Pascal U E

2021년 7월 3일

Good content, but hard to follow the instructor and do as he does