Machine Learning y Regresión con PySpark. Guía paso a paso

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Aprender los fundamentos de Apache Spark y MLlib

Generar un modelo de regresión con MLlib y PySpark de principio a fin

Comprender en profundidad el funcionamiento de los modelos de regresión

Clock2 horas
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots스페인어
Laptop데스크톱 전용

Es un curso práctico y efectivo para aprender a generar modelos de regresión (Machine Learning) con PySpark en un entorno de Big Data. Te enseñaremos desde cero los fundamentos de Spark y MLlib, y acabarás desarrollando avanzados modelos de regresión en PySpark para predecir el precio de las viviendas o el número de bicis que se alquilarán por horas.

개발할 기술

  • Machine Learning
  • Jupyter notebooks
  • PySpark

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Fundamentos de Spark  y Jupyter Notebooks

  2. Fundamentos de regresión con MLlib en PySpark

  3. Carga y Preprocesamiento de datos con PySpark

  4. Entrenamiento de modelos y optimización con MLlib

  5. Predicciones y evaluación de modelos

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.