Chevron Left
Object Detection with Amazon Sagemaker(으)로 돌아가기

Coursera Project Network의 Object Detection with Amazon Sagemaker 학습자 리뷰 및 피드백

4.5
별점
92개의 평가
18개의 리뷰

강좌 소개

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy an object detector using Amazon Sagemaker. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. We will use the SSD Object Detection algorithm from Sagemaker to create, train and deploy a model that will be able to localize faces of dogs and cats from the popular IIIT-Oxford Pets Dataset. Since this is a practical, project-based course, we will not dive in the theory behind deep learning based SSD or Object Detection, but will focus purely on training and deploying a model with Sagemaker. You will also need to have some experience with Amazon Web Services (AWS). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

최상위 리뷰

MA
2020년 9월 23일

Make Social Media pages Like FaceBook , Instagram , Twitter that we invite more Friends for like ur page and Grow Up. 👍👍👍❤️💙💛🌸🌸🌺🌺💜💖🌹🍃💞💝🌱🌷💐💕🌿🌱💓\n\nYouTube : https://bit.ly/2PBEung

VS
2020년 6월 21일

Good project to get started with AWS Sagemaker, all the steps involved are clearly explained.

필터링 기준:

Object Detection with Amazon Sagemaker의 18개 리뷰 중 1~18

교육 기관: Jaganadh G

2020년 8월 30일

The guided project 'Object Detection with Amazon Sagemaker' explains how to create an object detection model with SageMaker. The course gives necessary tips to pre-process the Pascal VOC XML to a format suitable to SageMaker and perform Object detection and deeply the model. The quality of materials and code is good. Overall the presentation is very excellent.

교육 기관: Mustafa A

2020년 9월 24일

Make Social Media pages Like FaceBook , Instagram , Twitter that we invite more Friends for like ur page and Grow Up. 👍👍👍❤️💙💛🌸🌸🌺🌺💜💖🌹🍃💞💝🌱🌷💐💕🌿🌱💓

YouTube : https://bit.ly/2PBEung

교육 기관: Vishal S

2020년 6월 22일

Good project to get started with AWS Sagemaker, all the steps involved are clearly explained.

교육 기관: Suhaimi C

2020년 9월 26일

Great project. Very thorough and lots of useful tips and tricks. Thank you for sharing this!

교육 기관: Mokakatla M

2020년 10월 13일

Perfect experience, but a lot of learning still required.

교육 기관: L . s

2020년 7월 30일

nice and handy explanation course

교육 기관: DEEPAK K S

2020년 9월 5일

thanks you

교육 기관: XAVIER S M

2020년 5월 31일

Thank You

교육 기관: ABDUL J C

2020년 9월 12일

good

교육 기관: JAMI P K

2020년 5월 14일

good

교육 기관: Suresh B K

2020년 4월 23일

Good

교육 기관: Kok P M

2020년 12월 7일

step-by-step, explained well.

교육 기관: Fahad M A A

2020년 10월 6일

This great like this course

교육 기관: daniel s

2021년 3월 18일

informative

교육 기관: ROHIT R N

2020년 4월 18일

It's a good Project to work on for beginners and those who want to have a hands on experience on AWS Sagemaker, however I had a hard time using Rhyme. I eventually ended up using my own laptop to sign into my AWS console plus I don't think its a good Idea to login through a remote system to AWS console using your personal account credentials. Anyway Kudos to the instructor for taking his time and explaining each and every step while coding.

교육 기관: Harsh D

2021년 2월 28일

Out dated commandas and as well as resource usage. THe author needs to update the resource usage so that students can successfully complete the project! Waste of money!

교육 기관: MD M R S

2020년 5월 9일

worst courrsera course ever

교육 기관: Chhavi R

2020년 4월 15일

Not satisfactory..