이 전문 분야 정보

최근 조회 14,618
Learn SAS or Python programming, expand your knowledge of analytical methods and applications, and conduct original research to inform complex decisions. The Data Analysis and Interpretation Specialization takes you from data novice to data expert in just four project-based courses. You will apply basic data science tools, including data management and visualization, modeling, and machine learning using your choice of either SAS or Python, including pandas and Scikit-learn. Throughout the Specialization, you will analyze a research question of your choice and summarize your insights. In the Capstone Project, you will use real data to address an important issue in society, and report your findings in a professional-quality report. You will have the opportunity to work with our industry partners, DRIVENDATA and The Connection. Help DRIVENDATA solve some of the world's biggest social challenges by joining one of their competitions, or help The Connection better understand recidivism risk for people on parole in substance use treatment. Regular feedback from peers will provide you a chance to reshape your question. This Specialization is designed to help you whether you are considering a career in data, work in a context where supervisors are looking to you for data insights, or you just have some burning questions you want to explore. No prior experience is required. By the end you will have mastered statistical methods to conduct original research to inform complex decisions.
학습자 경력 결과
50%
이 특화 과정을(를) 수료한 후 새로운 경력을 시작함
17%
급여 인상 또는 승진하기
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
초급 단계
완료하는 데 약 5개월 필요
매주 3시간 권장
영어
자막: 영어, 한국어, 독일어
학습자 경력 결과
50%
이 특화 과정을(를) 수료한 후 새로운 경력을 시작함
17%
급여 인상 또는 승진하기
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
초급 단계
완료하는 데 약 5개월 필요
매주 3시간 권장
영어
자막: 영어, 한국어, 독일어

이 전문 분야에는 5개의 강좌가 있습니다.

강좌1

강좌 1

Data Management and Visualization

4.4
별점
768개의 평가
214개의 리뷰
강좌2

강좌 2

Data Analysis Tools

4.5
별점
369개의 평가
80개의 리뷰
강좌3

강좌 3

Regression Modeling in Practice

4.4
별점
249개의 평가
48개의 리뷰
강좌4

강좌 4

Machine Learning for Data Analysis

4.2
별점
242개의 평가
53개의 리뷰

제공자:

웨슬리언 대학교 로고

웨슬리언 대학교

업계 파트너 중 한 곳의 로고업계 파트너 중 한 곳의 로고

자주 묻는 질문

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있으며 강좌를 완료하면 인증서가 발급됩니다. 강좌 내용을 읽고 보기만 원한다면 강좌를 무료로 청강할 수 있습니다. 수업료를 지급하기 어려운 경우, 재정 지원을 신청할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • 이 전문 분야는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 전문 분야 인증서를 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요.

  • No, Specializations are a premium product, and learners must pay or apply for financial aid to join them. You can access individual course content for free by searching for the course title in the catalog and choosing the This Course Only option when enrolling. You will not earn a Certificate in the free version of the course, or be able to access the Capstone Project.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 6-7 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over. The Capstone Project will be offered four times per year on a recurring schedule.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You will be able to access and manage data using either the Python or SAS programming language, explore patterns and associations among variables, and use machine learning methods to develop predictive algorithms. Additionally, you will have a portfolio of hands-on project work that demonstrates your ability to apply all of these methods to real-world situations.

  • You may choose to use either Python or SAS to complete the assignments. Both of these software packages are being made freely available.

  • This Specialization is appropriate for anyone interested in learning more about data analysis, including those new to the field. Some knowledge of basic programming and familiarity with linear algebra concepts may be helpful, but no specific background is required.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.