About this Course
최근 조회 8,530,541

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.


자막: 중국어 (간체자), 영어, 히브리어, 스페인어, 힌디어, 일본어...

귀하가 습득할 기술

Logistic RegressionArtificial Neural NetworkMachine Learning (ML) AlgorithmsMachine Learning

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.


자막: 중국어 (간체자), 영어, 히브리어, 스페인어, 힌디어, 일본어...

강의 계획 - 이 강좌에서 배울 내용

완료하는 데 2시간 필요


Welcome to Machine Learning! In this module, we introduce the core idea of teaching a computer to learn concepts using data—without being explicitly programmed. The Course Wiki is under construction. Please visit the resources tab for the most complete and up-to-date information.

5 videos (Total 42 min), 9 readings, 1 quiz
5개의 동영상
Supervised Learning12m
Unsupervised Learning14m
9개의 읽기 자료
Machine Learning Honor Code8m
What is Machine Learning?5m
How to Use Discussion Forums4m
Supervised Learning4m
Unsupervised Learning3m
Who are Mentors?3m
Get to Know Your Classmates8m
Frequently Asked Questions11m
Lecture Slides20m
1개 연습문제
완료하는 데 2시간 필요

Linear Regression with One Variable

Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradient descent method for learning.

7 videos (Total 70 min), 8 readings, 1 quiz
7개의 동영상
Cost Function - Intuition II8m
Gradient Descent11m
Gradient Descent Intuition11m
Gradient Descent For Linear Regression10m
8개의 읽기 자료
Model Representation3m
Cost Function3m
Cost Function - Intuition I4m
Cost Function - Intuition II3m
Gradient Descent3m
Gradient Descent Intuition3m
Gradient Descent For Linear Regression6m
Lecture Slides20m
1개 연습문제
Linear Regression with One Variable10m
완료하는 데 2시간 필요

Linear Algebra Review

This optional module provides a refresher on linear algebra concepts. Basic understanding of linear algebra is necessary for the rest of the course, especially as we begin to cover models with multiple variables.

6 videos (Total 61 min), 7 readings, 1 quiz
6개의 동영상
Matrix Matrix Multiplication11m
Matrix Multiplication Properties9m
Inverse and Transpose11m
7개의 읽기 자료
Matrices and Vectors2m
Addition and Scalar Multiplication3m
Matrix Vector Multiplication2m
Matrix Matrix Multiplication2m
Matrix Multiplication Properties2m
Inverse and Transpose3m
Lecture Slides10m
1개 연습문제
Linear Algebra10m
완료하는 데 3시간 필요

Linear Regression with Multiple Variables

What if your input has more than one value? In this module, we show how linear regression can be extended to accommodate multiple input features. We also discuss best practices for implementing linear regression.

8 videos (Total 65 min), 16 readings, 1 quiz
8개의 동영상
Gradient Descent in Practice II - Learning Rate8m
Features and Polynomial Regression7m
Normal Equation16m
Normal Equation Noninvertibility5m
Working on and Submitting Programming Assignments3m
16개의 읽기 자료
Setting Up Your Programming Assignment Environment8m
Access MATLAB Online and Upload the Exercise Files3m
Installing Octave on Windows3m
Installing Octave on Mac OS X (10.10 Yosemite and 10.9 Mavericks and Later)10m
Installing Octave on Mac OS X (10.8 Mountain Lion and Earlier)3m
Installing Octave on GNU/Linux7m
More Octave/MATLAB resources10m
Multiple Features3m
Gradient Descent For Multiple Variables2m
Gradient Descent in Practice I - Feature Scaling3m
Gradient Descent in Practice II - Learning Rate4m
Features and Polynomial Regression3m
Normal Equation3m
Normal Equation Noninvertibility2m
Programming tips from Mentors10m
Lecture Slides20m
1개 연습문제
Linear Regression with Multiple Variables10m
완료하는 데 5시간 필요

Octave/Matlab Tutorial

This course includes programming assignments designed to help you understand how to implement the learning algorithms in practice. To complete the programming assignments, you will need to use Octave or MATLAB. This module introduces Octave/Matlab and shows you how to submit an assignment.

6 videos (Total 80 min), 1 reading, 2 quizzes
6개의 동영상
Plotting Data9m
Control Statements: for, while, if statement12m
1개의 읽기 자료
Lecture Slides10m
1개 연습문제
Octave/Matlab Tutorial10m
완료하는 데 2시간 필요

Logistic Regression

Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logistic regression, and the application of logistic regression to multi-class classification.

7 videos (Total 71 min), 8 readings, 1 quiz
7개의 동영상
Cost Function10m
Simplified Cost Function and Gradient Descent10m
Advanced Optimization14m
Multiclass Classification: One-vs-all6m
8개의 읽기 자료
Hypothesis Representation3m
Decision Boundary3m
Cost Function3m
Simplified Cost Function and Gradient Descent3m
Advanced Optimization3m
Multiclass Classification: One-vs-all3m
Lecture Slides10m
1개 연습문제
Logistic Regression10m
완료하는 데 4시간 필요


Machine learning models need to generalize well to new examples that the model has not seen in practice. In this module, we introduce regularization, which helps prevent models from overfitting the training data.

4 videos (Total 39 min), 5 readings, 2 quizzes
4개의 동영상
Regularized Logistic Regression8m
5개의 읽기 자료
The Problem of Overfitting3m
Cost Function3m
Regularized Linear Regression3m
Regularized Logistic Regression3m
Lecture Slides10m
1개 연습문제
완료하는 데 5시간 필요

Neural Networks: Representation

Neural networks is a model inspired by how the brain works. It is widely used today in many applications: when your phone interprets and understand your voice commands, it is likely that a neural network is helping to understand your speech; when you cash a check, the machines that automatically read the digits also use neural networks.

7 videos (Total 63 min), 6 readings, 2 quizzes
7개의 동영상
Model Representation II11m
Examples and Intuitions I7m
Examples and Intuitions II10m
Multiclass Classification3m
6개의 읽기 자료
Model Representation I6m
Model Representation II6m
Examples and Intuitions I2m
Examples and Intuitions II3m
Multiclass Classification3m
Lecture Slides10m
1개 연습문제
Neural Networks: Representation10m
26502개의 리뷰Chevron Right


이 강좌를 수료한 후 새로운 경력 시작하기


이 강좌를 통해 확실한 경력상 이점 얻기

기계 학습의 최상위 리뷰

대학: WZApr 3rd 2018

Very nice course,. Give a fundamental knowledge of machine learning in a clear, logic and easy-to-understand way. Suitable for those who has relatively weak background of math and statistics to learn.

대학: MLAug 19th 2017

Very helpful and easy to learn. The quiz and programming assignments are well designed and very useful. Thank Prof. Andrew Ng and coursera and the ones who share their problems and ideas in the forum.



Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

스탠퍼드 대학교 정보

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.