About this 전문분야
28,785

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

초급 단계

완료하는 데 약 3개월 필요

매주 12시간 권장

영어

자막: 영어, 그리스어, 중국어 (간체자)

배울 내용

  • Check

    Apply basic algorithmic techniques such as greedy algorithms, binary search, sorting and dynamic programming to solve programming challenges.

  • Check

    Apply various data structures such as stack, queue, hash table, priority queue, binary search tree, graph and string to solve programming challenges.

  • Check

    Apply graph and string algorithms to solve real-world challenges: finding shortest paths on huge maps and assembling genomes from millions of pieces.

  • Check

    Solve complex programming challenges using advanced techniques: maximum flow, linear programming, approximate algorithms, SAT-solvers, streaming.

귀하가 습득할 기술

Graph TheoryNumber TheoryCryptographyProbability

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

초급 단계

완료하는 데 약 3개월 필요

매주 12시간 권장

영어

자막: 영어, 그리스어, 중국어 (간체자)

How the 전문분야 Works

강좌 수강

Coursera 전문 분야는 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 전문 분야에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 하나의 전문 분야에 속하는 강좌에 등록하면 해당 전문 분야 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료해도 됩니다. — 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 전문 분야에는 실습 프로젝트가 포함되어 있습니다. 전문 분야를 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 전문 분야에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우 각 강좌를 완료해야 프로젝트를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문분야에는 5개의 강좌가 있습니다.

강좌1

Mathematical Thinking in Computer Science

4.4
(471개의 평가)
Mathematical thinking is crucial in all areas of computer science: algorithms, bioinformatics, computer graphics, data science, machine learning, etc. In this course, we will learn the most important tools used in discrete mathematics: induction, recursion, logic, invariants, examples, optimality. We will use these tools to answer typical programming questions like: How can we be certain a solution exists? Am I sure my program computes the optimal answer? Do each of these objects meet the given requirements? In the course, we use a try-this-before-we-explain-everything approach: you will be solving many interactive (and mobile friendly) puzzles that were carefully designed to allow you to invent many of the important ideas and concepts yourself. Prerequisites: 1. We assume only basic math (e.g., we expect you to know what is a square or how to add fractions), common sense and curiosity. 2. Basic programming knowledge is necessary as some quizzes require programming in Python....
강좌2

Combinatorics and Probability

4.6
(235개의 평가)
Counting is one of the basic mathematically related tasks we encounter on a day to day basis. The main question here is the following. If we need to count something, can we do anything better than just counting all objects one by one? Do we need to create a list of all phone numbers to ensure that there are enough phone numbers for everyone? Is there a way to tell that our algorithm will run in a reasonable time before implementing and actually running it? All these questions are addressed by a mathematical field called Combinatorics. In this course we discuss most standard combinatorial settings that can help to answer questions of this type. We will especially concentrate on developing the ability to distinguish these settings in real life and algorithmic problems. This will help the learner to actually implement new knowledge. Apart from that we will discuss recursive technique for counting that is important for algorithmic implementations. One of the main `consumers’ of Combinatorics is Probability Theory. This area is connected with numerous sides of life, on one hand being an important concept in everyday life and on the other hand being an indispensable tool in such modern and important fields as Statistics and Machine Learning. In this course we will concentrate on providing the working knowledge of basics of probability and a good intuition in this area. The practice shows that such an intuition is not easy to develop. In the end of the course we will create a program that successfully plays a tricky and very counterintuitive dice game. As prerequisites we assume only basic math (e.g., we expect you to know what is a square or how to add fractions), basic programming in python (functions, loops, recursion), common sense and curiosity. Our intended audience are all people that work or plan to work in IT, starting from motivated high school students....
강좌3

Introduction to Graph Theory

4.6
(223개의 평가)
We invite you to a fascinating journey into Graph Theory — an area which connects the elegance of painting and the rigor of mathematics; is simple, but not unsophisticated. Graph Theory gives us, both an easy way to pictorially represent many major mathematical results, and insights into the deep theories behind them. In this course, among other intriguing applications, we will see how GPS systems find shortest routes, how engineers design integrated circuits, how biologists assemble genomes, why a political map can always be colored using a few colors. We will study Ramsey Theory which proves that in a large system, complete disorder is impossible! By the end of the course, we will implement an algorithm which finds an optimal assignment of students to schools. This algorithm, developed by David Gale and Lloyd S. Shapley, was later recognized by the conferral of Nobel Prize in Economics. As prerequisites we assume only basic math (e.g., we expect you to know what is a square or how to add fractions), basic programming in python (functions, loops, recursion), common sense and curiosity. Our intended audience are all people that work or plan to work in IT, starting from motivated high school students....
강좌4

Number Theory and Cryptography

4.6
(134개의 평가)
We all learn numbers from the childhood. Some of us like to count, others hate it, but any person uses numbers everyday to buy things, pay for services, estimated time and necessary resources. People have been wondering about numbers’ properties for thousands of years. And for thousands of years it was more or less just a game that was only interesting for pure mathematicians. Famous 20th century mathematician G.H. Hardy once said “The Theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics”. Just 30 years after his death, an algorithm for encryption of secret messages was developed using achievements of number theory. It was called RSA after the names of its authors, and its implementation is probably the most frequently used computer program in the word nowadays. Without it, nobody would be able to make secure payments over the internet, or even log in securely to e-mail and other personal services. In this short course, we will make the whole journey from the foundation to RSA in 4 weeks. By the end, you will be able to apply the basics of the number theory to encrypt and decrypt messages, and to break the code if one applies RSA carelessly. You will even pass a cryptographic quest! As prerequisites we assume only basic math (e.g., we expect you to know what is a square or how to add fractions), basic programming in python (functions, loops, recursion), common sense and curiosity. Our intended audience are all people that work or plan to work in IT, starting from motivated high school students....

강사

Avatar

Alexander S. Kulikov

Visiting Professor
Department of Computer Science and Engineering
Avatar

Michael Levin

Lecturer
Computer Science
Avatar

Vladimir Podolskii

Associate Professor
Computer Science Department

산업 파트너:

Industry Partner Logo #0

캘리포니아 샌디에고 대학교 정보

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

국립 연구 고등 경제 대학 정보

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 6-8 months.

  • As prerequisites we assume only basic math (e.g., we expect you to know what is a square or how to add fractions), basic programming in python (functions, loops, recursion), common sense and curiosity. Our intended audience are all people that work or plan to work in IT, starting from motivated high school students.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.