이 강좌에 대하여

최근 조회 21,351
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 3개 강좌 중 3번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 12시간 필요
영어
자막: 영어

배울 내용

  • Understand the the structure and techniques used in reinforcement learning (RL) strategies

  • Describe the steps required to develop and test an RL trading strategy

  • Describe the methods used to optimize an RL trading strategy

귀하가 습득할 기술

Reinforcement Learning Model DevelopmentReinforcement Learning Trading Algorithm OptimizationReinforcement Learning Trading Strategy DevelopmentReinforcement Learning Trading Algo Development
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 3개 강좌 중 3번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 12시간 필요
영어
자막: 영어

제공자:

New York Institute of Finance 로고

New York Institute of Finance

Google 클라우드 로고

Google 클라우드

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 3시간 필요

Introduction to Course and Reinforcement Learning

완료하는 데 3시간 필요
10개 동영상 (총 64분), 1 개의 읽기 자료, 1 개의 테스트
10개의 동영상
What is Reinforcement Learning?9m
History Overview2m
Value Iteration9m
Policy Iteration6m
TD Learning8m
Q Learning6m
Benefits of Reinforcement Learning in Your Trading Strategy6m
DRL Advantages for Strategy Efficiency and Performance7m
Introduction to Qwiklabs3m
1개의 읽기 자료
Idiosyncrasies and challenges of data driven learning in electronic trading10m
2

2

완료하는 데 5시간 필요

Neural Network Based Reinforcement Learning

완료하는 데 5시간 필요
9개 동영상 (총 39분)
9개의 동영상
Deep Q Networks - Loss2m
Deep Q Networks Memory2m
Deep Q Networks - Code3m
Policy Gradients4m
Actor-Critic3m
What is LSTM?7m
More on LSTM4m
Applying LSTM to Time Series Data7m
3

3

완료하는 데 4시간 필요

Portfolio Optimization

완료하는 데 4시간 필요
10개 동영상 (총 54분)
10개의 동영상
Steps Required to Develop a DRL Strategy7m
Final Checks Before Going Live with Your Strategy5m
Investment and Trading Risk Management4m
Trading Strategy Risk Management4m
Portfolio Risk Reduction4m
Why AutoML?13m
AutoML Vision2m
AutoML NLP3m
AutoML Tables7m

검토

REINFORCEMENT LEARNING FOR TRADING STRATEGIES의 최상위 리뷰

모든 리뷰 보기

Machine Learning for Trading 특화 과정 정보

This Specialization is for finance professionals, including but not limited to hedge fund traders, analysts, day traders, those involved in investment management or portfolio management, and anyone interested in gaining greater knowledge of how to construct effective trading strategies using Machine Learning. Alternatively, this specialization can be for machine learning professionals who seek to apply their craft to quantitative trading strategies. The courses will teach you how to create various trading strategies using Python. By the end of the Specialization, you will be able to create quantitative trading strategies that you can train and implement. You will also learn how to use reinforcement learning strategies to create algorithms that can update and train themselves. To be successful in this Specialization, you should have a basic competency in Python programming and familiarity with pertinent libraries for machine learning, such as Scikit-Learn, StatsModels, and Pandas. Experience with SQL will be helpful. You should have a background in statistics (expected values and standard deviation, Gaussian distributions, higher moments, probability, linear regressions) and basic knowledge of financial markets (equities, bonds, derivatives, market structure, hedging)....
Machine Learning for Trading

자주 묻는 질문

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.