About this 전문분야
24,108

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

초급 단계

완료하는 데 약 7개월 필요

매주 6시간 권장

영어

자막: 영어, 스페인어, 중국어 (간체자)

배울 내용

  • Check

    Motion Planning

  • Check

    Matlab

  • Check

    Estimation

귀하가 습득할 기술

Motion PlanningParticle FilterMatlab

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

초급 단계

완료하는 데 약 7개월 필요

매주 6시간 권장

영어

자막: 영어, 스페인어, 중국어 (간체자)

How the 전문분야 Works

강좌 수강

Coursera 전문 분야는 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 전문 분야에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 하나의 전문 분야에 속하는 강좌에 등록하면 해당 전문 분야 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료해도 됩니다. — 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 전문 분야에는 실습 프로젝트가 포함되어 있습니다. 전문 분야를 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 전문 분야에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우 각 강좌를 완료해야 프로젝트를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문분야에는 6개의 강좌가 있습니다.

강좌1

Robotics: Aerial Robotics

4.5
1,944개의 평가
505개의 리뷰
How can we create agile micro aerial vehicles that are able to operate autonomously in cluttered indoor and outdoor environments? You will gain an introduction to the mechanics of flight and the design of quadrotor flying robots and will be able to develop dynamic models, derive controllers, and synthesize planners for operating in three dimensional environments. You will be exposed to the challenges of using noisy sensors for localization and maneuvering in complex, three-dimensional environments. Finally, you will gain insights through seeing real world examples of the possible applications and challenges for the rapidly-growing drone industry. Mathematical prerequisites: Students taking this course are expected to have some familiarity with linear algebra, single variable calculus, and differential equations. Programming prerequisites: Some experience programming with MATLAB or Octave is recommended (we will use MATLAB in this course.) MATLAB will require the use of a 64-bit computer....
강좌2

Robotics: Computational Motion Planning

4.2
736개의 평가
191개의 리뷰
Robotic systems typically include three components: a mechanism which is capable of exerting forces and torques on the environment, a perception system for sensing the world and a decision and control system which modulates the robot's behavior to achieve the desired ends. In this course we will consider the problem of how a robot decides what to do to achieve its goals. This problem is often referred to as Motion Planning and it has been formulated in various ways to model different situations. You will learn some of the most common approaches to addressing this problem including graph-based methods, randomized planners and artificial potential fields. Throughout the course, we will discuss the aspects of the problem that make planning challenging....
강좌3

Robotics: Mobility

3.9
435개의 평가
110개의 리뷰
How can robots use their motors and sensors to move around in an unstructured environment? You will understand how to design robot bodies and behaviors that recruit limbs and more general appendages to apply physical forces that confer reliable mobility in a complex and dynamic world. We develop an approach to composing simple dynamical abstractions that partially automate the generation of complicated sensorimotor programs. Specific topics that will be covered include: mobility in animals and robots, kinematics and dynamics of legged machines, and design of dynamical behavior via energy landscapes....
강좌4

Robotics: Perception

4.4
453개의 평가
118개의 리뷰
How can robots perceive the world and their own movements so that they accomplish navigation and manipulation tasks? In this module, we will study how images and videos acquired by cameras mounted on robots are transformed into representations like features and optical flow. Such 2D representations allow us then to extract 3D information about where the camera is and in which direction the robot moves. You will come to understand how grasping objects is facilitated by the computation of 3D posing of objects and navigation can be accomplished by visual odometry and landmark-based localization....
강좌5

Robotics: Estimation and Learning

4.2
371개의 평가
85개의 리뷰
How can robots determine their state and properties of the surrounding environment from noisy sensor measurements in time? In this module you will learn how to get robots to incorporate uncertainty into estimating and learning from a dynamic and changing world. Specific topics that will be covered include probabilistic generative models, Bayesian filtering for localization and mapping....
강좌6

Robotics: Capstone

4.6
74개의 평가
20개의 리뷰
In our 6 week Robotics Capstone, we will give you a chance to implement a solution for a real world problem based on the content you learnt from the courses in your robotics specialization. It will also give you a chance to use mathematical and programming methods that researchers use in robotics labs. You will choose from two tracks - In the simulation track, you will use Matlab to simulate a mobile inverted pendulum or MIP. The material required for this capstone track is based on courses in mobility, aerial robotics, and estimation. In the hardware track you will need to purchase and assemble a rover kit, a raspberry pi, a pi camera, and IMU to allow your rover to navigate autonomously through your own environment Hands-on programming experience will demonstrate that you have acquired the foundations of robot movement, planning, and perception, and that you are able to translate them to a variety of practical applications in real world problems. Completion of the capstone will better prepare you to enter the field of Robotics as well as an expansive and growing number of other career paths where robots are changing the landscape of nearly every industry. Please refer to the syllabus below for a week by week breakdown of each track. Week 1 Introduction MIP Track: Using MATLAB for Dynamic Simulations AR Track: Dijkstra's and Purchasing the Kit Quiz: A1.2 Integrating an ODE with MATLAB Programming Assignment: B1.3 Dijkstra's Algorithm in Python Week 2 MIP Track: PD Control for Second-Order Systems AR Track: Assembling the Rover Quiz: A2.2 PD Tracking Quiz: B2.10 Demonstrating your Completed Rover Week 3 MIP Track: Using an EKF to get scalar orientation from an IMU AR Track: Calibration Quiz: A3.2 EKF for Scalar Attitude Estimation Quiz: B3.8 Calibration Week 4 MIP Track: Modeling a Mobile Inverted Pendulum (MIP) AR Track: Designing a Controller for the Rover Quiz: A4.2 Dynamical simulation of a MIP Peer Graded Assignment: B4.2 Programming a Tag Following Algorithm Week 5 MIP Track: Local linearization of a MIP and linearized control AR Track: An Extended Kalman Filter for State Estimation Quiz: A5.2 Balancing Control of a MIP Peer Graded Assignment: B5.2 An Extended Kalman Filter for State Estimation Week 6 MIP Track: Feedback motion planning for the MIP AR Track: Integration Quiz: A6.2 Noise-Robust Control and Planning for the MIP Peer Graded Assignment: B6.2 Completing your Autonomous Rover...

강사

Avatar

Jianbo Shi

Professor of Computer and Information Science
School of Engineering and Applied Science
Avatar

Vijay Kumar

Nemirovsky Family Dean of Penn Engineering and Professor of Mechanical Engineering and Applied Mechanics
School of Engineering and Applied Science
Avatar

Daniel Lee

Professor of Electrical and Systems Engineering
School of Engineering and Applied Science
Avatar

CJ Taylor

Professor of Computer and Information Science
School of Engineering and Applied Science
Avatar

Daniel E. Koditschek

Professor of Electrical and Systems Engineering
School of Engineering and Applied Science
Avatar

Sid Deliwala

Director, Electrical and Systems Engineering Labs and Lecturer, Electrical and Systems Engineering
Department of Electrical and Systems Engineering
Avatar

Kostas Daniilidis

Professor of Computer and Information Science
School of Engineering and Applied Science

펜실베이니아 대학교 정보

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • 이 전문 분야는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 전문 분야 인증서를 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요.

  • Time to completion can vary based on your schedule, but learners are able to complete the Specialization in as few as six months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • No particular background is necessary, however, some knowledge of engineering and mathematics is helpful.

  • You can receive a full refund up to two weeks after payment. View the full refund policy.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit.

  • You will be able to program a robot’s movement and flight. The specialization is designed to help you move into a career in Robotics, engineering or other industries where robots are used to make technological advancement in the field.

  • The specialization requires the use of MATLAB which is provided for free from MathWorks. Included in the specialization are instructional videos and download information for the use of MATLAB. MATLAB will require the use of a 64-bit computer.

  • We will provide resources that might help prepare you to take this specialization.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.