About this Course
최근 조회 18,549

다음 전문 분야의 8개 강좌 중 4번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 22시간 필요

영어

자막: 영어

귀하가 습득할 기술

Bioinformatics AlgorithmsAlgorithmsPython ProgrammingAlgorithms On Strings

다음 전문 분야의 8개 강좌 중 4번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 22시간 필요

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 4시간 필요

DNA sequencing, strings and matching

This module we begin our exploration of algorithms for analyzing DNA sequencing data. We'll discuss DNA sequencing technology, its past and present, and how it works.

...
19 videos (Total 112 min), 7 readings, 2 quizzes
19개의 동영상
Lecture: Why study this?4m
Lecture: DNA sequencing past and present3m
Lecture: Genomes as strings, reads as substrings5m
Lecture: String definitions and Python examples3m
Practical: String basics 7m
Practical: Manipulating DNA strings 7m
Practical: Downloading and parsing a genome 6m
Lecture: How DNA gets copied3m
Optional lecture: How second-generation sequencers work 7m
Optional lecture: Sequencing errors and base qualities 6m
Lecture: Sequencing reads in FASTQ format4m
Practical: Working with sequencing reads 11m
Practical: Analyzing reads by position 6m
Lecture: Sequencers give pieces to genomic puzzles5m
Lecture: Read alignment and why it's hard3m
Lecture: Naive exact matching10m
Practical: Matching artificial reads 6m
Practical: Matching real reads 7m
7개의 읽기 자료
Welcome to Algorithms for DNA Sequencing10m
Pre Course Survey10m
Syllabus10m
Setting up Python (and Jupyter)10m
Getting slides and notebooks10m
Using data files with Python programs10m
Programming Homework 1 Instructions (Read First)10m
2개 연습문제
Module 120m
Programming Homework 114m
2
완료하는 데 3시간 필요

Preprocessing, indexing and approximate matching

In this module, we learn useful and flexible new algorithms for solving the exact and approximate matching problems. We'll start by learning Boyer-Moore, a fast and very widely used algorithm for exact matching

...
15 videos (Total 114 min), 1 reading, 2 quizzes
15개의 동영상
Lecture: Boyer-Moore basics8m
Lecture: Boyer-Moore: putting it all together6m
Lecture: Diversion: Repetitive elements5m
Practical: Implementing Boyer-Moore 10m
Lecture: Preprocessing7m
Lecture: Indexing and the k-mer index10m
Lecture: Ordered structures for indexing8m
Lecture: Hash tables for indexing7m
Practical: Implementing a k-mer index 7m
Lecture: Variations on k-mer indexes9m
Lecture: Genome indexes used in research9m
Lecture: Approximate matching, Hamming and edit distance6m
Lecture: Pigeonhole principle6m
Practical: Implementing the pigeonhole principle 9m
1개의 읽기 자료
Programming Homework 2 Instructions (Read First)10m
2개 연습문제
Module 220m
Programming Homework 212m
3
완료하는 데 2시간 필요

Edit distance, assembly, overlaps

This week we finish our discussion of read alignment by learning about algorithms that solve both the edit distance problem and related biosequence analysis problems, like global and local alignment.

...
13 videos (Total 92 min), 1 reading, 2 quizzes
13개의 동영상
Lecture: Solving the edit distance problem12m
Lecture: Using dynamic programming for edit distance12m
Practical: Implementing dynamic programming for edit distance 6m
Lecture: A new solution to approximate matching9m
Lecture: Meet the family: global and local alignment10m
Practical: Implementing global alignment 8m
Lecture: Read alignment in the field4m
Lecture: Assembly: working from scratch2m
Lecture: First and second laws of assembly8m
Lecture: Overlap graphs8m
Practical: Overlaps between pairs of reads 4m
Practical: Finding and representing all overlaps 3m
1개의 읽기 자료
Programming Homework 3 Instructions (Read First)10m
2개 연습문제
Module 320m
Programming Homework 38m
4
완료하는 데 2시간 필요

Algorithms for assembly

In the last module we began our discussion of the assembly problem and we saw a couple basic principles behind it. In this module, we'll learn a few ways to solve the alignment problem.

...
13 videos (Total 83 min), 1 reading, 2 quizzes
13개의 동영상
Lecture: The shortest common superstring problem8m
Practical: Implementing shortest common superstring 4m
Lecture: Greedy shortest common superstring7m
Practical: Implementing greedy shortest common superstring 7m
Lecture: Third law of assembly: repeats are bad5m
Lecture: De Bruijn graphs and Eulerian walks8m
Practical: Building a De Bruijn graph 4m
Lecture: When Eulerian walks go wrong9m
Lecture: Assemblers in practice8m
Lecture: The future is long?9m
Lecture: Computer science and life science5m
Lecture: Thank yous 43
1개의 읽기 자료
Post Course Survey10m
2개 연습문제
Programming Homework 48m
Module 414m
4.8
91개의 리뷰Chevron Right

25%

이 강좌를 수료한 후 새로운 경력 시작하기

20%

이 강좌를 통해 확실한 경력상 이점 얻기

Algorithms for DNA Sequencing의 최상위 리뷰

대학: VKAug 8th 2017

This course provided me a very quick overview of all the core concepts pertaining to DNA sequencing. It is very well organized, crystal clear demonstration of concepts and I really enjoyed the course.

대학: AZMar 11th 2016

Awesome, you will learn a lot about how DNA assemblers work, but very challenging and time demand in, especially if your background is in life science and not computer science.

강사

Avatar

Ben Langmead, PhD

Assistant Professor
Computer Science
Avatar

Jacob Pritt

Department of Computer Science

존스홉킨스대학교 정보

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Genomic Data Science 전문 분야 정보

This specialization covers the concepts and tools to understand, analyze, and interpret data from next generation sequencing experiments. It teaches the most common tools used in genomic data science including how to use the command line, Python, R, Bioconductor, and Galaxy. The sequence is a stand alone introduction to genomic data science or a perfect compliment to a primary degree or postdoc in biology, molecular biology, or genetics. To audit Genomic Data Science courses for free, visit https://www.coursera.org/jhu, click the course, click Enroll, and select Audit....
Genomic Data Science

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.