Chevron Left
Data Science Capstone(으)로 돌아가기

존스홉킨스대학교의 Data Science Capstone 학습자 리뷰 및 피드백

4.5
별점
1,025개의 평가
268개의 리뷰

강좌 소개

The capstone project class will allow students to create a usable/public data product that can be used to show your skills to potential employers. Projects will be drawn from real-world problems and will be conducted with industry, government, and academic partners....

최상위 리뷰

NT

Mar 05, 2018

Capstone did provide a true test of Data Analytics skills. Its like a being left alone in a jungle to survive for a month. Either you succumb to nature or come out alive with a smile and confidence.

SS

Mar 29, 2017

Wow i finally managed to finish the specialization!! definitely learned a lot and also found out difficulties in building predictors by trying to balancing speed, accuracy and memory constraints!!!

필터링 기준:

Data Science Capstone의 258개 리뷰 중 1~25

교육 기관: Marcio G

Aug 21, 2017

The whole specialization is a bit of a mixed bag... Many of the courses rely too heavily on teaching R programming and not sufficiently on data science concepts (such statistics or machine learning). The instructors (specially Peng) spent way too much time detailing R syntax that could have been picked up by the students on their own from other resources available on the web...

The regression models and statistical inference courses are exceptions though: Together with the machine learning course, these are probably the most useful from the whole specialization.

The materials in this capstone project are way sloppier than materials in other courses by the way. They lack structure and feel confusing. I'm not even sure if the instructors tried to implement the proposed project themselves to have a base of reference. Feels like they were already growing tired of the whole thing and put the capstone project together in a hurry without much thought or care.

The theme of the project is indeed interesting (text-mining and NLP), but I think that would have been more productive for me to take a NLP course instead. You are going to use very little from what you have learned from the other courses in the specialization (for the most part the data product course) and you will need to learn text-mining and NLP from scratch on your own to complete the capstone (no videos nor materials available in the course on these subjects).

Also, if I was going to implement the same app on my own these days, I would probably use RNNs, not Katz Back-off and Markov Transition Matrices as in the capstone and I would probably use SparkR. Heck, I might not even use R, probably Scala or Python with Spark instead. In short, data science moves fast and this course already feels very outdated...

The instructors seem quite experienced in statistical analysis, so it's a shame that they decided to focus so heavily on R programming instead... That would have made the specialization more resilient to technological innovations in the field...

The specialization surely could be improved and these issues corrected, but all courses seem pretty much abandoned by the instructors. Most of the courses still have active "mentors" (volunteers not associated with Coursera nor Johns Hopkins) , but "mentors" seem to have lost contact with the instructors: For example, a couple of assignments require data that is no longer available (dead links) and "mentors" have provided this data in the discussion fora. I reckon that if "mentors" could contact instructors, the dead links would have been fixed in the materials by now...

The peer-grading doesn't work so well... Most of the submissions I graded were painful to review (extremely low quality). Not surprisingly, the graders were also pretty low-skilled. They can't even understand the requirements (and I suspect not even the English language) and they will take points from correct submissions.

I urge any employers to look at the actual code for this capstone from candidates given the general incompetence and poor skills of the students I graded. The grading criteria is pretty relaxed, so even though I would like to fail them, I still had to give them a passing grade. Such a weak grading criteria is detrimental to all people who actually have the skills and put hard work on their submissions. Many undeserving people will, unfortunately, pass and receive a certificate.

교육 기관: Thej K R

Jul 31, 2019

I spent 80 hrs on this course. I hated so many things. 1. There was lot of uncertainty in the course. For example we didn't know how far to go with NLP. And I constantly came across in the forum where people were complaining about how there was 0 guidance and had no idea what to do. Saviours were those few people who put up help posts on the forum and sharded thier trecherous experience going down different paths. 3. The topic was already hard enough NLP, something I had no clue about and then there was this additional problem all the fucing time about memory. Jesus! One of the most painful courses primarily due to overload, lack of clear instructions and their refusal to edit one letter in the course since 5 years! Fuck them!

교육 기관: Roberto G

Dec 02, 2017

This class is challenging and a lot of people complained so I'll tell you my approach since I was able to complete it on the first try in my free time from my full time job. Not having any knowledge of Natural Language Programming, I found Youtube videos and presentations from the Stanford class taught by Dan Jurafsky and Christopher Manning. Study it up to the explanation of n-grams, it should be enough for the class. I completed the first weeks in few days so I had more time to actually build the model and the app (you'll need more than the scheduled weeks if you have no prior experience). I found valuable resources in the course forum. Then you're pretty much on your own, identify the best packages, how to use them, look on Stack Overflow when you get stuck. Start using a very small set of data so you can quickly build the model and the app until you get something that works. After that you can improve the model by using more data, finding the balance between processing time, app time response and prediction accuracy. Everyone understands the limitation of the project so give importance to quickness rather than accuracy.

My overall evaluation of the project is a mixed bag. The positive is that it introduces you to a new topic (NLP) and the goal is reasonable, it takes a lot of effort but it's not impossible and it forces you to learn something meaningful (something easier would have not made me learn something valuable). The negative is that there is no explanation whatsoever about NLP, which was never mentioned in the previous courses, so there's not much teaching or guidance. The involvement of Swiftkey is limited to providing the data.

교육 기관: Paul R

Mar 22, 2019

The project topic itself is interesting, but longer (structured as 7 weeks); not much guidance until you find the right threads from mentors in the discussion forum from a few years ago or repeatedly google stackoverflow; it is much more technical than the rest of the course; and doesn't really use much of what was learned during the meat of the specialization's statistics/regression/ML courses, other than data science principles and tools (though new R libraries were needed). These issues aside, the project was an interesting challenge to complete nonetheless. Overall this specialization is now a few years old, and the plethora of 4 and 5 star reviews across all courses seem generous and out-dated. Materials are not being updated, forums are a mess of years-old threads with not much current activity; there is a feeling of waning interest and participation. This was clearly cutting edge material and course back in 2014-6, if JH/Coursera intend to continue offering it, the material needs some refresh and reordering, tougher grading rubrics (I saw a lot of inconsistency and poor quality which met the rubric criteria, alongside great quality work), and more active involvement from lecturers and mentors (and, please fix the typos).

교육 기관: Jose A V C

Apr 16, 2016

Very disappointed with this final course. Little to no support. Discussion Forum provides some level of help but you are basically on your own.

Very challenging to come up to speed with Natural Language Processing techniques if you have never taken any class about it.

My recommendation to JHU and Coursera is to add a separate course for NLP where you cover all the basics and then have the Capstone.

교육 기관: Piyush V

Mar 26, 2018

On the Capstone Course, those who are reading this review I would say, skip everything (videos) and directly start writing codes and building the app. Otherwise this course is somewhat unnecessarily stretched too much, it could have been cut way short. I will tell you what I did: I skipped everything, got the gist of the objective, scanned through the codes and worked on my idea.

I started the specialization in December of 2015 and I am ending it today, March of 2018. I remember struggling with R in the beginning (I was a novice programmer writing dirty codes). Now I can't stop thinking about plethora of data product opportunities surrounding me.

교육 기관: Chun-Fu W

Mar 20, 2017

In my opinion, this course is a waste of time, it simply throws a bunch of links and terminology for you to google and research. The project is interesting but once again, you have to do tons of research and take up other courses to fill the gaps (might as well do the other courses instead of this one).

I do not recommend this course or the specialization.

교육 기관: E. C

Feb 18, 2017

NLP is a total different thing and should be a course by itself. I would prefer a a large scale machine learning capstone where we could make models and it would fit better to real life situation! Through all the courses I worked hard only to reach NLP capstone? this doesn't feel right! Please fix it!

교육 기관: Carlos R S D

Nov 19, 2019

I took this specialization a couple of months ago and did not comment as such. Now I turned around to remember some topics and started reading comments.

I found many comments that say the final project has nothing to do with the previous 9 courses and when I did it I thought the same.

Looking at it in perspective, I think the previous courses are absolutely necessary for the final project. The objective of carrying out a project with such characteristics is to apply the knowledge by oneself.

The first courses of programming in R, extraction and cleaning, and exploratory analysis are fundamental to understand the problem. In this case the cleaning has to do with the transformations using regular expressions and tokenization. The exploratory analysis should be done in any data science project, otherwise you may encounter surprises when implementing the models.

Statistical inference was necessary and closely linked to exploratory analysis, especially to select samples well and review distributions, since some machine learning methods may be affected by distributions. I must say that I did not see this when I took this course, but it was because of my lack of experience. Maybe there was a lack of guidance.

The algorithm I used was regression on the ngrams for simplicity, time and capacity of my computer, but it could have been combined with other methods such as neural networks or svm.

Implementing the model in shiny and then adjusting it because it was very heavy was also interesting.

As a summary, I really liked this specialization and although it was very hard and many times I did not know how to move forward (especially in the capstone), I think the challenge was important for my learning and I was very entertained.

교육 기관: Jerome C

Sep 14, 2017

Capstone very challenging. Minimal instructions force the students to do a lot of research on the subject. But this is extremely rewarding. Doing is good job is possible (well, my grade is still pending at the time of this comment!) and makes students take a huge leap forward in data exploration, data cleaning, setting up a strategy for analysis and algorithm, make an Rpresentation, create an online app (by the way, I also created an small app for my company thanks to this training, especially the "Developing Data Product" course).

교육 기관: Noel T

Mar 05, 2018

Capstone did provide a true test of Data Analytics skills. Its like a being left alone in a jungle to survive for a month. Either you succumb to nature or come out alive with a smile and confidence.

교육 기관: Fiona E Y

Sep 28, 2016

This course is unlike all the others. Although you will need information gained in the previous nine modules, the Capstone Project requires you to work on a long and difficult problem using your own initiative. Mentors, tutors and Swiftkey employees are lacking throughout this project.

I worked through many different R packages to generate the word prediction N-Grams because R has a tendency to run out of memory. Many students are forced to use a cut down version of the three million lines of text because of memory issues but I managed to find the proverbially needle in the R packages haystack that allowed me to use the entire dataset!

I had problems with publishing the presentation to RPubs - it just would not work using either RStudio or RConsole but at least I had a fall back position of placing the presentation on my own website.

It took me three attempts to complete this project, nine months (Jan-Sep 2016) and about 300 hours in total, I didn't give up so nor should you, you can do it! And Good Luck! Hope to chat with you on the Data Science Specialism LinkedIn Group for Completers!

Finally was it worth paying for all of the certificates. Yes, it was!

교육 기관: Muzaffar H

Dec 05, 2017

Although this course was the most complicated part, it was a really good experience in implementing our understanding and try to develop a practical product. I really like the approach of providing a data product that is presentable to the other community other than data specialist. I will refer to the course content from time to time in the future. I would recommend the course set to my colleagues if they have interest on data science.

교육 기관: John H

Dec 05, 2017

This course significantly challenged my skills in programming, probability, machine learning and applied mathematics (eg Katz's backoff theory-equations). The collaboration in the discussion forums and the information on-line is absolutely critical and is the only way you can succeed in this project. I appreciate all the help from my classmates and from those who took the time to post helpful information on-line.

교육 기관: Ken K

Jun 16, 2017

This class provided a good background on the principles and process of Data Science and related research. The R material was very good and the assignments and capstone project will force you to become a good R programmer. The statistical analysis materials were also very thorough. Overall, the courses were well taught and the material was relatively easy to follow and learn.

교육 기관: Nino P

May 24, 2019

The task is really hard, but it should be. You are a data scientist now, be ready to deal with new analyses and new topics. It's a bit tough since topic in NLP and we haven't discussed much that in previous courses, but you will learn something new and apply the knowledge you gained in the specialization. Thank you Brian, Jeff and Roger for making this specialization.

교육 기관: Kristin A

Jun 19, 2018

The capstone project was a good way to analyze and solve a more complex problem with some structure provided. It would have been nice to have had a machine learning component as well, but that would have likely made the course even longer and more difficult to grade. This capstone project did give me a data product that I have already demonstrated in an interview.

교육 기관: Pouria T

Dec 05, 2017

This project was somewhat challenging, yet relevant with what it came before it. Completion of all the ten courses were so much fun and definitely better than wasting money on a traditional education. I've learn way more from online educational platform, in comparison with the traditional universities/colleges that I have attended. Thank you, this was so much fun.

교육 기관: Fernando S e S

Jun 17, 2017

Honestly, there is very little guidance for the project and it deals with a whole new type of data: text. That's when you find out that working with quantitative data, like all the previous courses, is easy. I got my ass kicked throughout 3 sessions in order to finish this thing. But you know what? Maybe that's how it should be for one to learn something.

교육 기관: Benjamin S

Apr 19, 2018

Great times! It took me almost four years to get through this!! I had a child, sold a house, went to graduate school in statistics and I'm about to graduate. The DSS classes gave me a lot of great tips for graduate school and really cool reports, apps, ideas to show off to potential employers. Just got to get that job now!!

교육 기관: Francesco C

Jun 05, 2018

In my opinion this last course is a great way to conclude the Data Science specialization, because not only it "forces" you to apply a lot of lessons learned during the other 10 courses, but also because it gives you the opportunity to understand how important is to set the problem in a good way before trying to solve it.

교육 기관: Ben H

Jan 16, 2020

Great finish to an excellent specialisation. It's actually opened up some excellent career options for me and I am very grateful to the instructions and Coursera for providing the platform.

교육 기관: Anthony D

Oct 25, 2016

This course was great. I went from having a decent grasp on statistics and a little knowledge of software like SPSS to being employed as a data analyst where most of my job is using R.

교육 기관: Wenjing L

Apr 26, 2019

The final project is interesting. Text input prediction is a very flexible topic. It could be deep, or simple. I hope in the future more practical models will be introduced during the course. Now we are asked to explore it almost solely by ourselves, which usually isn't the case at work, where one would seldom have to research on or develop something from scratch. Also I hope it will focus more on data analysis and visualization than developing an actual app. Shiny is a good tool to do interactive plotting, but not handy enough for UI development. I believe most people will never be asked to develop UI in Shiny at work. Finally I'd like to thank all the instructors who designed and delivered these 10 Data Science courses. I have learnt a lot from them.

교육 기관: Richard I C

Jul 19, 2016

As a capstone to a series of courses that covered data science and R, I found this one to be a bit lacking. There was no involvement from the professors at JHU or the folks at SwiftKey. As was mentioned in another review, the course feels abandoned. All you get a few short (two minutes or so) videos that give you little in the way of instruction or direction. Basically, they just say, "Go do this. Good luck!"

There were also no Mentors or TAs to guide students or answer questions. It was the students helping each other through the forums. Sometimes it was helpful and everyone involved learned something. Other times, it was the blind trying to lead the visually-impaired.

On a positive note, you will use all of the skills from the previous courses: writing R functions, performing exploratory analysis and publishing it via RPubs. Your final product will be displayed for everyone via ShinyApps and a presentation using R Presentation (also published via RPubs).

On a(nother) negative note, the topic of Natural Language Processing is not an easy one to just walk into and feel confident in providing a working next-word prediction algorithm in about eight (8) weeks. You're reading academic journal articles, watching multiple videos from another Coursera course (which actually focuses on the topic of NLP, and takes place over several courses and several months!).

Supposedly, there is work going on to update the course, so hopefully future students will get a better experience. I did take a bit away from this course, especially since I made more than one attempt to complete it. However, it was definitely a shock to find myself missing those things that one typically finds in a learning environment -- descriptive background, assistance to problems, etc. -- and seeing that I was for all intents and purposes on my own. Even in the professional world of data analysis, I have never experienced the lack of support that I found in this course.

With that, I am giving it three (3) stars. As I said, I did learn a bit, but it was a bit of a struggle that required multiple attempts to complete. This would have been better off as a stand alone topic (which it already is by another Coursera affiliated school), or having a capstone course that builds on a topic more in the wheelhouse of the JHU professors: a capstone project focusing on bioinformatics or biostatistics would have been amazing in comparison to this.