Chevron Left
Getting and Cleaning Data(으)로 돌아가기

존스홉킨스대학교의 Getting and Cleaning Data 학습자 리뷰 및 피드백

7,923개의 평가
1,310개의 리뷰

강좌 소개

Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data....

최상위 리뷰


2020년 5월 2일

This course provides an introduction of some important concepts and tools on a very important aspect of data science: cleaning and organizing data before any analysis. A must for any data scientist.


2016년 2월 1일

Easy, mostly instructive Course. The Assignments and quizzes are quite good, and illustrates the lessons very well.\n\nSee the videos for general presentation, but use the energy on the excersizes.

필터링 기준:

Getting and Cleaning Data의 1,273개 리뷰 중 276~300

교육 기관: Tseliso M

2017년 2월 2일

Of the courses I have done so far in the specialization, this was the most practical.

교육 기관: Carlos M

2016년 2월 2일

Very interesting material and basic knowledge on R to read files and produce tidy data

교육 기관: GAGAN G

2020년 10월 14일

Very nice courses in coursera and fundamental concept are very helping for us. Clear.

교육 기관: Tomas M

2017년 8월 22일

Excellent course mates! Lots & lots of very useful info & examples! Thanks so much!!!

교육 기관: Dmytro I

2017년 5월 15일

It's a great course, however, explanations to the final assignment were rather vague.

교육 기관: sambit c

2016년 10월 12일

A great course. Learned a lot. However student has to put an extra effort practicing.

교육 기관: Kseniia K

2016년 5월 3일

Great course, more difficult than previous two, but also more challenging and useful!

교육 기관: Wang J

2016년 5월 1일

Great practice for R programming and the MySQL part is extremely helpful for my work.

교육 기관: leo n

2019년 8월 8일

This is the best course so far. Very challenging project at the end. I learned a lot

교육 기관: Jorge A B J

2019년 7월 25일

Very nice course! Would defensively recommend to anyone seeking this specialization!

교육 기관: Puja G

2018년 2월 6일

Very useful to get hands on experience in data science to solve real world problems!

교육 기관: Stephen A

2020년 10월 3일

This course gives all necessary foundations to kick start getting and cleaning data

교육 기관: Abay J

2019년 1월 20일

Love quizzes and a course project. Working on them develops you as a data scientist

교육 기관: Ajendra S

2018년 8월 29일

I really liked this course. This course helped me to understand the data wrangling.

교육 기관: Tiago P F

2018년 1월 3일

Excellent course, with a very important focus on documentation and code versioning.

교육 기관: jutzhang

2016년 6월 26일


Please update the using methods of some functions in this lecture.

교육 기관: Andaru

2016년 2월 12일

90% of data science is cleaning, this really gets people accepting that key concept

교육 기관: Luz M S G

2020년 8월 29일

It was an excellent course. It was challenging but I enjoyed it and learnt a lot.

교육 기관: Vitalii S

2017년 7월 20일

This course gave me an insights regarding data cleaning. Very grateful, thank you!

교육 기관: Karthic C

2017년 7월 17일

Well put together course. Happy and eager to finish the rest of the specialization

교육 기관: Thor R

2019년 1월 18일

Useful, the course is as much an introduction to R- part 2 as about cleaning data

교육 기관: Raunak S

2018년 10월 5일

excellent course to get started with to learn the basic concepts of data tidying.

교육 기관: Sunder R V

2017년 8월 27일

Enjoyed the course and learnt quite a few things in my quest for "Data Analytics"

교육 기관: Roberto D

2017년 6월 21일

Very useful for deciding best methods pulling data and consistently massage data.

교육 기관: Jairo A V G

2020년 6월 25일

an excellent course that allowed me to expand my knowledge and learn new things.