Coursera
온라인 학위경력 찾기기업용 Coursera대학교용
  • 검색
  • 상위 강좌
  • 로그인
  • 무료 회원 가입
    Coursera
    • 검색
    • Python
    Related topics:Ipythonpython 데이터 과학python 데이터 구조초급 python코딩데이터

    필터링 기준

    "python"에 대한 931개의 결과

    • University of Michigan

      University of Michigan

      Python for Everybody

      획득할 기술: Computational Logic, Computer Networking, Computer Programming, Computer Programming Tools, Data Management, Data Structures, Databases, Extract, Transform, Load, Javascript, Mathematical Theory & Analysis, Mathematics, Modeling, Natural Language Processing, Programming Principles, Python Programming, SQL, Software Architecture, Software Engineering, Statistical Programming, Theoretical Computer Science, Web Development

      4.8

      (250.1k개의 검토)

      Beginner · Specialization

    • Google

      Google

      Google IT Automation with Python

      획득할 기술: Application Development, Cloud Computing, Cloud Platforms, Computational Logic, Computational Thinking, Computer Programming, Computer Programming Tools, Data Structures, Debugging, Google Cloud Platform, Leadership and Management, Mathematical Theory & Analysis, Mathematics, Other Programming Languages, Programming Principles, Python Programming, Software Engineering, Software Engineering Tools, Software Testing, Statistical Programming, Test Automation, Theoretical Computer Science, Unit Testing

      4.7

      (30.6k개의 검토)

      Beginner · Professional Certificate

    • Google

      Google

      Crash Course on Python

      획득할 기술: Python Programming, Statistical Programming, Computer Programming, Data Structures, Programming Principles, Syntax, Semantics

      4.8

      (24.8k개의 검토)

      Beginner · Course

    • University of Michigan

      University of Michigan

      Python 3 Programming

      획득할 기술: Algebra, Algorithms, Communication, Computer Program, Computer Programming, Computer Programming Tools, Euler'S Totient Function, Journalism, Mathematics, Object-Oriented Programming, Other Programming Languages, Programming Principles, Python Programming, Representational State Transfer, Software Engineering, Statistical Programming, Theoretical Computer Science

      4.7

      (19k개의 검토)

      Beginner · Specialization

    • IBM

      IBM

      Data Science Fundamentals with Python and SQL

      획득할 기술: Analysis, Basic Descriptive Statistics, Business Analysis, Computational Logic, Computer Programming, Correlation And Dependence, Data Analysis, Data Management, Data Visualization, Database Administration, Database Application, Databases, Extract, Transform, Load, General Statistics, Machine Learning, Mathematical Theory & Analysis, Mathematics, Plot (Graphics), Probability & Statistics, Probability Distribution, Python Programming, R Programming, Regression, SPSS, SQL, Statistical Analysis, Statistical Programming, Statistical Tests, Statistical Visualization, Theoretical Computer Science, Web

      4.5

      (46.5k개의 검토)

      Beginner · Specialization

    • University of Michigan

      University of Michigan

      Programming for Everybody (Getting Started with Python)

      획득할 기술: Python Programming, Computer Programming, Statistical Programming, Language, Programming Principles, Semantics, Syntax

      4.8

      (210.4k개의 검토)

      Mixed · Course

    • Placeholder
      IBM

      IBM

      IBM Data Science

      획득할 기술: Algebra, Algorithms, Business Analysis, Communication, Computational Logic, Computer Programming, Computer Programming Tools, Correlation And Dependence, Data Analysis, Data Management, Data Mining, Data Structures, Data Visualization, Database Administration, Database Application, Databases, Econometrics, Exploratory Data Analysis, Extract, Transform, Load, General Statistics, Geovisualization, Interactive Data Visualization, Machine Learning, Machine Learning Algorithms, Marketing, Mathematical Theory & Analysis, Mathematics, Plot (Graphics), Probability & Statistics, Python Programming, R Programming, Regression, Regression Analysis, SPSS, SQL, Spreadsheet Software, Statistical Analysis, Statistical Machine Learning, Statistical Programming, Statistical Visualization, Supply Chain, Supply Chain Systems, Supply Chain and Logistics, Theoretical Computer Science, Web

      4.6

      (93.8k개의 검토)

      Beginner · Professional Certificate

    • Placeholder
      University of Michigan

      University of Michigan

      Applied Data Science with Python

      획득할 기술: Algorithms, Analysis, Applied Machine Learning, Artificial Neural Networks, Computational Logic, Computer Graphics, Computer Networking, Computer Programming, Data Analysis, Data Mining, Data Visualization, Econometrics, General Statistics, Graph Theory, Machine Learning, Machine Learning Algorithms, Machine Learning Software, Mathematical Theory & Analysis, Mathematics, Natural Language Processing, Network Analysis, Network Model, Plot (Graphics), Probability & Statistics, Programming Principles, Python Programming, Regression, Scikit-Learn, Statistical Machine Learning, Statistical Programming, Statistical Tests, Theoretical Computer Science

      4.5

      (31.9k개의 검토)

      Intermediate · Specialization

    • Placeholder
      University of Michigan

      University of Michigan

      Python Basics

      획득할 기술: Other Programming Languages, Computer Programming, Python Programming, Statistical Programming, Computer Programming Tools, Syntax, Semantics

      4.8

      (15.2k개의 검토)

      Beginner · Course

    • Placeholder
      IBM

      IBM

      Python for Data Science, AI & Development

      획득할 기술: Data Management, Theoretical Computer Science, Mathematical Theory & Analysis, Python Programming, Pandas, Mathematics, Extract, Transform, Load, Statistical Programming, Computer Programming, Python Libraries, Numpy, Computational Logic

      4.6

      (26.9k개의 검토)

      Beginner · Course

    • Placeholder
      University of Pennsylvania

      University of Pennsylvania

      Introduction to Programming with Python and Java

      획득할 기술: Computational Thinking, Computer Programming, Data Analysis, Data Management, Data Structures, Data Visualization, Java Programming, Mathematical Theory & Analysis, Mathematics, Mobile Development, Plot (Graphics), Programming Principles, Python Programming, Software Engineering, Software Testing, Statistical Programming, Theoretical Computer Science

      4.4

      (838개의 검토)

      Beginner · Specialization

    • Placeholder

      무료

      Pontificia Universidad Católica de Chile

      Pontificia Universidad Católica de Chile

      Introducción a la programación en Python I: Aprendiendo a programar con Python

      획득할 기술: Python Programming, Statistical Programming, Computer Programming, Programming Principles

      4.4

      (3.4k개의 검토)

      Beginner · Course

    python과(와) 관련된 검색

    python for beginners
    python for everybody
    python for data science
    python data analysis
    python programming
    python for data science, ai & development
    python for everybody specialization
    python basics
    1234…78

    요약하자면, 여기에 가장 인기 있는 python 강좌 10개가 있습니다.

    • Python for Everybody: University of Michigan
    • Google IT Automation with Python: Google
    • Crash Course on Python: Google
    • Python 3 Programming: University of Michigan
    • Data Science Fundamentals with Python and SQL: IBM
    • Programming for Everybody (Getting Started with Python): University of Michigan
    • IBM Data Science: IBM
    • Applied Data Science with Python: University of Michigan
    • Python Basics: University of Michigan
    • Python for Data Science, AI & Development: IBM

    Data Analysis에서 학습할 수 있는 스킬

    분석 (85)
    빅 데이터 (64)
    Python 프로그래밍 (47)
    비즈니스 분석 (40)
    R 프로그래밍 (37)
    통계 분석 (36)
    SQL (33)
    데이터 모델 (29)
    데이터 마이닝 (27)
    탐구 데이터 분석 (26)
    데이터 모델링 (21)
    데이터 조작 (20)

    파이썬에 대한 자주 묻는 질문

    • Python은 대규모 및 소규모 애플리케이션에 자주 사용되는 범용 프로그래밍 언어입니다. Python을 사용하면 웹 개발 및 데이터 분석을 연결하는 방법을 알아낼 수 있습니다. Python이 널리 채택된 이유는 대형 표준 라이브러리를 갖추고 있으며, 읽기 쉽고, 기능, 절차 및 객체 지향 프로그래밍 스타일과 같은 여러 패러다임을 지원하기 때문입니다. Python 모듈은 다양한 데이터베이스와 상호 작용하므로 대규모 데이터 분석에 사용하기에 매우 좋습니다. Python 프로그래밍 언어는 데이터 과학 및 머신 러닝의 입문 강좌에 적합한 경우가 많습니다. 경력을 발전시키기 위해 Python을 온라인으로 배우는 방법을 찾고 계셨다면 잘 찾아오신 것입니다.

      파이썬은 Coursera 2020년 GSI(글로벌 기술 지수)에서 인기 있는 직업 기술 중 하나입니다. 2020년 GSI 보고서 다운로드.

      ‎

    • We recommend these courses for those who wish to learn Python without prior computer programming experience. You might be interested in learning how to automate accounting processes, or ways to bring efficiency to day-to-day marketing analytics and data mining. Python is used in large-scale functions and software engineering jobs, such as game development, machine learning, database management, and more. Regardless of your end goals, this collection covers the fundamentals of programming in Python.‎

    • A quick search of Indeed.com returns over 40,000 job openings with Python programming skills or experience listed as a requirement. The wide adoption of the language across many industries results in a large number of job opportunities. Common job titles include Python Developer, Python Software Engineer, Full Stack Developer and Python Database Programmer. Of the Python-specific jobs listed, 43% of offered salaries are above $100K per year, and some senior-level Python programming engineer positions offer over $200K per year. It’s very fair to say that Python skills and experience can lead to a lucrative and secure career. The proper Python certification can influence hiring managers looking to fill specific roles on their team.‎

    • Following is an excerpt from a Coursera Community forum topic about what programming languages our Community members use.

      "I've been in software development for 50 years (now retired) and languages come and go. If you're into software development, keep active in several, and strive to learn a new and different culture language every year or two. In simple terms today I like Python and JavaScript. For longevity in marketable skills, C and C++ are essential base skills. I used C for over 30 years. Learn Haskell, it'll improve all your other programming skills even if you never use it in a project." - Gordon

      "For data science it is most important to understand and implement algorithms. Python is one of the languages that is really self describing. And one of the major reasons why I use it for data science projects especially machine learning is that it is very light. Anyway, for all my projects that have complicated algorithms, I use OCTAVE for trying out algorithms (since I have all datascience codes stored there). Mainly by breaking it into simpler problems and then in the end I convert it into desired language and join the simpler and shorter algorithms." - Hardi‎

    • Both Python and R are free, open-source languages that can run on Windows, macOS, and Linux. Both can handle just about any data analysis task, and both are considered relatively easy languages to learn, especially for beginners. So which should you choose to learn (or learn first)? Before we dig into the differences, here’s a broad overview of each language. Read this article about the difference between Python and R.‎

    • Before you start learning Python, it can be helpful to have some experience using computers, particularly working with any programming language. However, you don’t need any previous programming experience before learning Python. In fact, Python is typically one of the first languages programmers learn to use because of its simplicity and versatility.‎

    • Some common career paths for someone who knows Python include software development, data analysis, and back-end web applications. If you work in these fields, you may use Python to write, edit, or manage software. You may test and debug code, build websites, or connect applications. Some people may choose to work in education, financial services, computation, or project management after learning Python. They may put their Python skills to work analyzing and computing large data sets or teach others how to use the programming language.‎

    • Some topics related to Python that you can study include other programming languages like Java, Perl, and C++. The skills you develop as you learn Python can be applied to other languages, and you may find that you’re able to learn them faster. If you’re interested in some of the real-world applications of Python, you can explore topics like data science, data analysis, statistics, and scripting. Learning about these fields can help you decide the type of work you want to do as well as other courses you want to take. Additional topics include cybersecurity, cloud architecture, and computer networking.‎

    • The types of places that hire people with a background in Python are as varied as the applications that use the language, and you may find work in public and private organizations. These places may need a computer programmer who can build websites, analyze data, implement security protocols, and write code. Hiring managers for these companies may look for people with a background in Python because the language allows you to take on different roles within the organization, including product management and data analysis.‎

    이 FAQ 콘텐츠는 정보 전달 목적만으로 사용할 수 있습니다. 학습자는 과정 및 기타 학점 정보가 개인적, 직업적 및 재정적 목표에 부합하는지 확인하기 위해 추가 조사를 수행하는 것이 좋습니다.
    살펴볼 만한 다른 주제
    Placeholder
    예술 & 인문학
    338개의 강좌
    Placeholder
    비즈니스
    1095개의 강좌
    Placeholder
    컴퓨터 공학
    668개의 강좌
    Placeholder
    데이터 과학
    425개의 강좌
    Placeholder
    정보 기술
    145개의 강좌
    Placeholder
    건강
    471개의 강좌
    Placeholder
    수학 및 논리
    70개의 강좌
    Placeholder
    자기개발
    137개의 강좌
    Placeholder
    물리 과학 및 공학
    413개의 강좌
    Placeholder
    사회 과학
    401개의 강좌
    Placeholder
    언어 학습
    150개의 강좌

    Coursera Footer

    경력을 시작하거나 쌓기

    • Google 데이터 분석가
    • Google 프로젝트 관리
    • Google UX 디자인
    • Google IT 지원
    • IBM 데이터 과학
    • IBM 데이터 분석가
    • Excel & R을 사용한 IBM 데이터 분석
    • IBM 사이버 보안 분석가
    • IBM 데이터 엔지니어링
    • IBM 풀스택 클라우드 개발자
    • Facebook 소셜 미디어 마케팅
    • Facebook 마케팅 분석
    • Salesforce 영업 개발 담당자
    • Salesforce 영업 운영
    • Intuit 부기
    • Google 클라우드 자격증: 클라우드 아키텍트 취득 준비
    • Google 클라우드 자격증: 클라우드 데이터 엔지니어 취득 준비
    • 경력 시작
    • 수료증 취득 준비
    • 경력 쌓기

    인기 있는 주제 찾아보기

    • 무료 강좌
    • 언어 학습
    • 파이썬
    • Java
    • 웹 디자인
    • SQL
    • Cursos Gratis
    • Microsoft Excel
    • 프로젝트 관리
    • 사이버 보안
    • 인사
    • 데이터 과학 무료 강좌
    • 영어 말하기
    • 콘텐츠 작성
    • 풀스택 웹 개발
    • 인공 지능
    • C 프로그래밍
    • 커뮤니케이션 기술
    • 블록체인
    • 모든 강좌 보기

    인기 강좌 및 문서

    • 데이터 과학 팀을 위한 기술
    • 데이터 기반 의사 결정
    • 소프트웨어 엔지니어링 기술
    • 엔지니어링 팀을 위한 소프트 스킬
    • 경영 기술
    • 마케팅 기술
    • 영업 팀을 위한 기술
    • 제품 관리자 기술
    • 금융을 위한 기술
    • 영국에서 인기 있는 데이터 과학 강좌
    • Beliebte Technologiekurse in Deutschland
    • 인기 있는 사이버 보안 자격증
    • 인기 있는 IT 자격증
    • 인기 있는 SQL 자격증
    • 마케팅 관리자 커리어 가이드
    • 프로젝트 관리자 커리어 가이드
    • Python 프로그래밍 기술
    • 웹 개발자 커리어 가이드
    • 데이터 분석가 기술
    • UX 설계자를 위한 기술

    온라인으로 학위 또는 자격증 취득

    • MasterTrack® 자격증
    • 전문 자격증
    • 대학교 수료증
    • MBA 및 경영학 학위
    • 데이터 과학 학위
    • 컴퓨터 공학 학위
    • 데이터 분석 학위
    • 공중 보건 학위
    • 사회 과학 학위
    • 관리 학위
    • 유럽 일류 대학의 학위
    • 석사 학위
    • 학사 학위
    • 성적 기반 경로를 제공하는 학위
    • 이학사 강좌
    • 학사 학위란 무엇인가요?
    • 석사 학위를 취득하는 데 얼마나 오래 걸리나요?
    • 온라인 MBA를 들을 만한 가치가 있나요?
    • 대학원 등록금을 지불하는 7가지 방법
    • 모든 자격증 보기

    Coursera

    • 소개
    • 제공 내용
    • 리더십
    • 직업
    • 카탈로그
    • Coursera Plus
    • 전문 자격증
    • MasterTrack® 자격증
    • 학위
    • 기업용 Coursera
    • 정부용
    • 캠퍼스용
    • 파트너가 되기
    • 코로나바이러스감염증-19 대응

    커뮤니티

    • 학습자
    • 파트너
    • 개발자
    • 베타 테스터
    • 번역가
    • 블로그
    • 기술 블로그
    • 지도 센터

    기타

    • 보도 자료
    • 투자자
    • 조건
    • 개인정보 보호
    • 도움말
    • 접근성
    • 문의하기
    • 문서
    • 디렉토리
    • 계열사
    • 현대 노예 선언문
    어디에서나 학습
    앱스토어에서 다운로드하기구글 플레이에서 받기
    Placeholder
    © 2022 Coursera Inc. All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder